Rometec srl - www.rometec.it - Rometec srl - www.rometec.it - Rometec srl - www # Direct action pressure reducing valve Thread connection Flange connection Model 513 Model 514 For steam and gases. (For liquids, consult our technical department). Suitable for application in; ironing machines, laundries and dry cleaners', cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc. #### **Specifications** - Materials carefully selected for resistance to wear, extreme temperatures and corrosion. They can be fully recycled, and use a single, non-metallic, asbestos-free joint. - Simplicity of design, ensuring minimum maintenance requirements. - Easy installation; may be assembled in any position, even upside down. - Moderate weight and size. - Interior design conceived for maximum capacity and performance for size. - Easy to adjust. The valves are supplied unregulated, but with the corresponding spring, duly identified, for the required pressure reduction. - Rating plate which identifies the regulation field. - Three springs, easily interchangeable and identified by colour and code. - Anchoring system immune to vibrations; may be sealed to prevent manipulation. - Selft-centring lock, independent of axle, designed to guarantee absolue precision of regulation at the most demanding points. - Protective filter for the locking surfaces. - High degree of airtightness of the lock at zero consumption, exceeding the requirements of DIN-3230. Page 3. - Stainless steel bellows welded to the plasma. Airtightness tested with helium, ensuring absolute reliability and long life. - All valves undergo throrough testing. - Each component is numbered, registered and inspected. If previously requested, the valve will be accompanied by certificates corresponding to materials, batch, tests and performance. #### **IMPORTANT** Depending on demand: - May be manufactured using other materials for specific working conditions (high temperatures, fluids, etc.). - Other connections. - Degreased and completely free of oils and greases. | N°. | DIFOE | | MATERIAL | | | | | | | | | | |--|--------------|----------------|--|--|--|-----|--|--|--|--|--|--| | PIECE | | PIECE | NODULAR IRON | CARBON STEEL | STAINLESS STEEL | | | | | | | | | 1 | | | Nodular iron (EN-JS1020) | Carbon steel (EN-1.0619) | Stainless steel (EN-1.4408) | | | | | | | | | 2 | 2 Cover | | Aluminium (EN-AC-44200) | Aluminium (EN-AC-44200) | Aluminium (EN-AC-44200) | | | | | | | | | 3 | 3 Seating | | Stainless steel (EN-1.4542) | Stainless steel (EN-1.4542) | Stainless steel (EN-1.4542) | | | | | | | | | 4 | 4 Guide | | Graphite PTFE (Teflón) | Graphite PTFE (Teflón) | Graphite PTFE (Teflón) | | | | | | | | | 5 | Lock | | Stainless steel (EN-1.4034) | Stainless steel (EN-1.4034) | Stainless steel (EN-1.4034) | | | | | | | | | 6 | Filter | | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Ι. | | | | | | | | 7 | Auxiliar | y spring | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | 1 | | | | | | | | 8 | Cap | | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | | | | | | | | | 9 | Bellows | ring | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | | | | | | | | | 10 | Bellows | disc | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | | | | | | | | | 11 | Bellows | 3 | Stainless steel (EN-1.4571) | Stainless steel (EN-1.4571) | Stainless steel (EN-1.4571) | | | | | | | | | 12 | Axle | | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | 1 | | | | | | | | 13 | Separa | tor disc | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | Stainless steel (EN-1.4404) | | | | | | | | | 14 | Regula | tion screw | Carbon steel (EN-1.1191) | Carbon steel (EN-1.1191) | 1 3 | | | | | | | | | 15 | Spring | press | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Ι, | | | | | | | | | 16 | Spring | | Chrome-silicon steel (EN-10270-2-FDSiCr) | Chrome-silicon steel (EN-10270-2-FDSiCr) | Chrome-silicon steel (EN-10270-2-FDSiCr) | Ι' | | | | | | | | 17 | Rating | plate | Stainless steel (EN-1.4301) | Stainless steel (EN-1.4301) | | | | | | | | | | 18 | Handw | heel | Aluminium (EN-AC-44200) | Aluminium (EN-AC-44200) | Aluminium (EN-AC-44200) | Ι. | | | | | | | | 19 | Body jo | int | Graphite | Graphite | Graphite | 1 (| | | | | | | | 20 | | | PTFE (Topchem) | PTFE (Topchem) | PTFE (Topchem) | 1 | | | | | | | | 21 | Nut | | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Ι' | | | | | | | | 22 | Washer | r | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Ι, | | | | | | | | 23 | Washer | r | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | ١, | | | | | | | | 24 | Screw | | Carbon steel (EN-1.1191) | Carbon steel (EN-1.1191) | Stainless steel (EN-1.4401) | | | | | | | | | 25 | Washer | r | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Stainless steel (EN-1.4401) | | | | | | | | | 26 | Anchor | ing bolt | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | Carbon steel (EN-1.1141) | | | | | | | | | | Seal | | Plastic | Plastic | Plastic | | | | | | | | | 28 | Sealing wire | | Sealing wire | Sealing wire | Sealing wire | | | | | | | | | | | R | 1/2" to 1" | | | | | | | | | | | | | DN | | 15 to 25 | | | | | | | | | | 10 Bellows disc 11 Bellows 12 Axle 13 Separator disc 14 Regulation screw 15 Spring press 16 Spring 17 Rating plate 18 Handwheel 19 Body joint 20 Seating joint 21 Nut 22 Washer 23 Washer 24 Screw 25 Washer 26 Anchoring bolt 27 Seal 28 Sealing wire | | | 25 | 40 | 40 | | | | | | | | | OPE | RATING | | 17 | 17 | 17 | | | | | | | | | | DITIONS | | 210 | 230 | 230 | | | | | | | | | 4l | 1 | MIN TEMP IN °C | 10°4 D | - 41 -10 | '4-60 D | L. | | | | | | | | | MODEL | 513 | 514 | | | | | |-----|--------------------------|---|------------------------------------|--|--|--|--| | Ron | netec srl ^p w | ww.rometec.it | - Rometec sel- | | | | | | | CONNECTIONS | Whitworth gas-tight cylindrical female ISO 228/1 1978 (DIN-259) | PN-25 EN-1092-2
PN-40 EN-1092-1 | | | | | | | | | ww.rometec.it | | | | | | - Rometec srl - | | | | | | | | | | | | |--|-----------------------------|-----------|---|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|--------------------------------|-------------|-------------|-------------|-------------|-------------|--| | CONNECTIONS | | | Whitworth gas-tight cylindr
ISO 228/1 1978 (DIN-259) | | | | | ical female | | | | | PI
PI | N-25 EN-1092-
N-40 EN-1092- | | | | | | | | Н | | | 57 | | | 57 | | | 57 | | | 57 | | | 57 | | | 57 | | | | H ₁ | | | 150 | | | 150 | | 150 | | 150 | | 150 | | 150 | | | | | | | | h | | | 25 | | | 25 | | 25 | | 25 | | 25 | | 25 | | | | | | | | L | | | 85 | | | 95 | | 105 | | 150 | | 150 | | 160 | |) | | | | | | | В | 75 | | | 75 | | 75 | | 75 | | 75 | | 75 | | | | | | | | | | D | _ | | | _ | | _ | | 95 | | 105 | | 115 | | | | | | | | | | K | _ | | | _ | | _ | | 65 | | 75 | | 85 | | | | | | | | | | I | _ | | | _ | | | _ | | 14 | | 14 | | 14 | | | | | | | | | b | _ | | | _ | | | _ | | 16 | | 18 | | | 18 | | | | | | | | DRILLS N°. | _ | | | | | | _ | | 4 | | 4 | | 4 | | | | | | | | VEIGHT IN Kgs. | NODULAR IRON | 1,98 | | | 2,05 | | | 2,29 | | | 3,60 | | 3,65 | | 5 | 4,73 | | 3 | | | | 툹 | CARBON STEEL | | 2,08 | | | 2,15 | | | 2,44 | | | 3,85 | | 3,95 | | | 5,05 | | 5 | | | STAINLESS STEEL | | | 2,13 | | | 2,25 | | | 2,55 | | | 3,95 | | 4,08 | | | 5,20 | |) | | | SPRING REGULATING
RANGE
IN bar
(REDUCED PRESSURE) | | | 1,40 a 4,00 | 3,50 a 8,60 | 0,14 a 1,70 | 1,40 a 4,00 | 3,50 a 8,60 | 0,14 a 1,70 | 1,40 a 4,00 | 3,50 a 8,60 | 0,14 a 1,70 | 1,40 a 4,00 | 3,50 a 8,60 | 0,14 a 1,70 | 1,40 a 4,00 | 3,50 a 8,60 | 0,14 a 1,70 | 1,40 a 4,00 | 3,50 a 8,60 | | | CODE | NODULAR
IRON
2001- | | 513.60262 | 513.60263 | 513.63461 | 513.63462 | 513.63463 | 513.61061 | 513.61062 | 513.61063 | 514.60261 | 514.60262 | 514.60263 | 514.63461 | 514.63462 | 514.63463 | 514.61061 | 514.61062 | 514.61063 | | | | CARBON
STEEL
2001- | 513.80241 | 513.80242 | 513.80243 | 513.83441 | 513.83442 | 513.83443 | 513.81041 | 513.81042 | 513.81043 | 514.80241 | 514.80242 | 514.80243 | 514.83441 | 514.83442 | 514.83443 | 514.81041 | 514.81042 | 514.81043 | | | | STAINLESS
STEEL
2001- | | 513.80222 | 513.80223 | 513.83421 | 513.83422 | 513.83423 | 513.81021 | 513.81022 | 513.81023 | 514.80221 | 514.80222 | 514.80223 | 514.83421 | 514.83422 | 514.83423 | 514.81021 | 514.81022 | 514.81023 | | | | TABLE OF PRESSURES, FLOW COEFFICIENTS
AND REGULATION FIELDS | | | | | | | | | | | | |-----|--|-----------------|---------------------------|----------------------|----|--|--|--|--|--|--|--| | | | | 1/2" | 1" | | | | | | | | | | | | | 15 | 20 | 25 | | | | | | | | | | MAXII | MUM INPUT PR | ESSURE IN bar (P1 MAX.) | 17 | | | | | | | | | | | MAXI | MUM REDUCTI | ON DIFFERENTIAL IN bar | P1 : 10 | | | | | | | | | | | MINIM | JM REDUCED F | PRESSURE IN bar (P2 MIN.) | 0,14 | | | | | | | | | | | FL(| OW COEFFICIE | NT Kvs m³/h ΔP = 1 bar | 1,50 2,50 3,00 | | | | | | | | | | | ING REGULATING
PANGE IN bar
UCED PRESSURE) | 0.14 to 1.70 | CODE | 56494 | | | | | | | | | | | | 0,14 to 1,70 | IDENTIFICATION COLOUR | White | | | | | | | | | | | | 4 40 1- 4 00 | CODE | | | | | | | | | | | | | 1,40 to 4,00 | IDENTIFICATION COLOUR | Pink | | | | | | | | | | Ron | SPRING
RAN
REDUCE | STL TO MAN | w.rometec.it - l | 56496
Rometec srl | | | | | | | | | | | | -3,30 to 0,00 * | IDENTIFICATION COLOUR | Red | | | | | | | | | ## www.rometec.it/2" Romete@"srl - www.rometec.it PRESSURE IN bar 1,5 194 250 275 73 95 105 339 167 178 221 240 305 289 380 414 111 106 140 148 325 246 177 236 208 285 Rometec srl*- www.rometec.it www.remetec.it ## Rometacosti or common control of the remaining matter cate remainin Area of influence of input pressure. (P₁) Area of influence of reduced pressure. (P2) exerted by the spring displaces the axle and maintains the locking ball open. The fluid exerts an opposite force on the hood as it passes, which tends to reduce the section of passage of the fluid through the seating. The action of the spring and reaction of the pressure on the bellows balance each other, and the reduced pressure is maintained constant. The fluctuations in consumption affect the reduced pressure. The bellows detects these variations via the balance hole, provoking a change in the passage of fluid as a function of the established reduced pressure. In working conditions with zero consumption, the valve remains closed and completely airtight when there is a slight increase in reduced pressure. #### Installation - Allways install the valve in a section of horizontal tubing, as close as possible to the point of consumption. - The valve may be assembled in any position, even upside-down. - Verify that the fluid flows in the direction indicated by the arrow on the body of the - The input and output tubes must be of the correct size and properly supported, to avoid any fall in pressure or tension. - The output tubing should ideally have a greater diameter than the input tubing, to avoid excessive velocity of flow of the liquid. - In accordance with the requirements of "Regulations for pressure devices ITC-MIE-AP 2 5.8", the pressure reduction facilities in steam circuits will be supplied with: - 1- A pressure gauge with syphon tube and three end cock, in accordance with article 11 of the MIE-AP 1 instructions, "Boilers", located before and after the reduction valve. - 2- A safety valve following the reduction valve, capable of evacuating the maximum flow of steam, which permits flow at the level regulated and adjusted to the maximum reduced pressure of service plus a maximum of 10%. #### **Example of installation for steam** - Condensate separator. - 2 Interruption valve. - 3 Filter. - 4 Syphon tube. - 5 Pressure gauge cock. - 6 Pressure gauge. - 7 Pressure reducing valve. - 8 Safety valve. - Interruption valve with adjusting cone. - 10 Condensate purger. #### **IMPORTANT** — The distance between the pressure reducing valve <a> I and the interruption valves<a> 2.2 and <a> 2.3 must be 8 ÷ 10 times the diameter of the tube. ### Rometec srl - www.rometec.it #### Start-up and adjustment of the reduced pressure ## R-Characteristic the values wanted the interest of the values val - 2- Check the rating plate (17) to verify that the regulation field for the reduced pressure is appropriate and that the spring (16) corresponds to the same range. - 3- Remove the nut (21), the rating plate (17) and the anchoring bolt (26). - 4- With the input interruption valve fully open and the output interruption valve closed, turn the handwheel (18) gradually from left to right to increase the reduced pressure, or from right to left to decrease it, until the required reduced pressure is obtained at zero consumption. - 5- Slowly open the output interruption valve. - 6- Readjust the required reduced pressure in consumption conditions. - 7- Put the anchoring bolt (26) and the rating (17) in place, and fix with the nut (21). - 8- Seal the valve to prevent further adjustments, using the sealing wire (28) and the seal (27). - 9- We recommend that the input pressure P₁ and the reduced pressure P₂ be recorded in the corresponding space of the rating plate (17). #### Assembly and disassembly - 1- Unseal the valve by cutting the wire (28). - 2- Remove the nut (21), the rating plate (17) and the anchoring bolt (26). - 3- Turn the handwheel (18) from right to left until you notice the spring (16) loosening. - 4- Remove the screws (24) along with the washers (25). - 5- Separate the cover (2) from the body (1), and you will have access to all the internal components. This enables simple maintenance and replacement of the spring (16), the bellows components (9) (10) (11) and the seating components (3) (4) (5) (6) (7) (8) - 6- If the seating has been disassembled, replace the joint (20) with a new one. Put a new body joint in place (19). - 7- Put the axle (12) in the guide hole (4) and check that it can move freely and is perpendicular to the bellows disc (10) when the bellows components (9) (10) (11) are put in place. - 8- Select the spring (16) corresponding to the reduced pressure. - 9- Put the cover (2) on the body (1) and the screws (24) with the washers (25), and screw them in. - 10- Finally, proceed as described in "Start-up and adjustment of the reduced pressure". #### Maintenance Correct installation with interruption valves at the input and output points facilitates maintenance. The filter (6) should be cleaned regularly. When assembling the valve, replace the seating joint (20) and body joint (19) with new ones. e-mail: info@vycindustrial.com http://www.vycindustrial.com